Embedded Implementation of Visual Detection and
Tracking Algorithm for Mobile Robot

Gunawan Lumban Gaol

Bandung Institute of Technology

School of Electrical Engineering
and Informatics
Dept. of Electrical Engineering
40132, Bandung, Indonesia

gunawan.marbun@students.itb
.ac.id

Abstract— This article describes findings on implementation of
person detection and tracking algorithms in Nvidia Jetson TK1
using OpenCV4Tegra and python language. It uses built-in
OpenCV HOG (Histogram of Oriented Gradients) descriptor for
detection and KCF (Kernelized Correlation Filters) for tracking.
Parameter values are then tuned to the best trade off values
between speed and accuracy. Both detection and tracking
algorithms are evaluated on data samples taken while the robot is
in function, providing realistic measurement on such real cases.
Hardware implementation is done as stated in [1].

Keywords— person detection and tracking,
Opencv4Tegra.

Jetson TKI1,

I. INTRODUCTION

This article addresses the embedded implementation
problem of RGB based people detection and tracking from the
perspective of a moving observer. We focus on indoor
scenarios in which a robot is patrolling an area and taking
tracking action on supposedly suspicious people. Patrolling
used point to point movement in 2D world coordinate. During
patrolling, robots can take observation between each point to
determine suspicious people. Suspicious is defined as being in
a relatively same location for an amount of duration, in which
the robot will take tracking action until it is stopped or lose
track of the person. Losing track is defined after a certain
amount of image frame processed without detecting any
person.

The first problem of embedded implementation is
computational cost. Real time detection and tracking must be
fast and accurate enough despite having several limitations on
hardware. A widely accepted practice in software
development is to use hardware-friendly languages such as
C++ for writing software implementation code. However,
developing in C++ demands substantial effort, which can lead
to longer development times. Conversely, writing in high-level
languages such as Python can slow down processes. To strike
a balance between efficiency and ease of development, we
adopted an approach that utilizes Cython to interface between
C++ and Python.

Kusprasapta Mutijarsa

Bandung Institute of Technology

School of Electrical Engineering
and Informatics
Dept. of Electrical Engineering
40132, Bandung, Indonesia

sony@stei.itb.ac.id

Widyawardana Adiprawita

Bandung Institute of Technology

School of Electrical Engineering
and Informatics
Dept. of Electrical Engineering
40132, Bandung, Indonesia

wadiprawita@gmail.com

The second problem addresses modularity. We have tried
using ZED Camera but came up with Kinect since the ZED
SDK supported on Jetson TK1 is only up to 1.2.0, disabling us
from using python as our software implementation language.
Although we use Kinect v.1 to acquire images [1], we use only
RGB data to enable another commercial camera to be used as
a substitute for Kinect as long as we use similar hardware as
Nvidia Jetson TK1. Another advantage is that using RGB data
acquired from the camera provides the most safe way as it
doesn’t require emitting a signal from the device.

Nvidia Jetson TK1 comes with Linux kernel version
3.10.40, CUDA 6.5, and OpenCV 2.4.8. Nvidia enables
hardware acceleration of OpenCV in two ways, between 2x-
5x speedup in Nvidia’s Tegra CPU and between 5x — 20x
speedup in GPU modules (including HOG module). List of
accelerated functions can be found in [2].

II. RELATED WORKS

Hardware devices have their own limitations. For Kinect,
suggested usage is 1-3 m distance to the sensor based on [3]
that agrees on Microsoft documentation on Kinect
specifications in [4]. Summary of specifications are shown in
Table 1.

TABLE I
KINECT SPECIFICATIONS
Specs Values Unit
Frame rate (depth | 30 frames per
and color stream second (FPS)
Viewing Angle 43 wvertical, 57 | degree
horizontal
Suggested Usage 1-3 meter
Color Resolution 640x480 pixel
Depth Resolution 640x480 pixel

We use OpenKinect libfreenect library [5] with python
wrapper to use Kinect in our implementation. We discovered
that we need to manually change the depth bit format in
function sync get depth inside file freenect.pyx from

DEPTH_11BIT to DEPTH_REGISTERED in order to make
depth values pixel mapped correctly to the colour values pixel.
Directly modifying the format argument in main source code
happened to invoke wrong results of depth values.

Depth values in cm are calculated from raw 11-bit disparity
value by using formula given in [6]. The approximation is
stated to be 10 cm off at 4 m away and less than 2 cm off
within 2.5 m. Angle measurement values relative to the robot
are calculated using a simple formula of dividing horizontal
field of view to width of the image. Both formulas can be seen
in the equation below.

Distance (em) = 100/(—0.00307 * rawDisparity + 3.33)

HFOV
dagrag fplxal = Width

Angle

Some related works of object detection algorithm using
Nvidia Jetson TK1 involving neural network claims to have
around 5-6 frames per second using Darknet Yolo and 5
frames per second using Caffe SSD [7], too slow for
application in real-time. Another reason for us to use a simpler
approach using optimized HOG descriptors on Jetson TK1.

II1. OBIECT DETECTION METHODS

We use built-in OpenCV methods of a pre-trained HOG +
Linear SVM model to perform pedestrian detection. This
method detects people (pedestrian) on structural level of
having a head, two arms, a torso, and two legs. The first step
in training an object detector using HOG is to sample P
positive samples and N negative samples and extract HOG
descriptor from these samples. Supposedly N has to be greater
than P. Next step is to train a Linear Support Vector Machine
on both of positive and negative samples. It basically split hog
descriptor values of positive and negative sample by a linear
line with a margin as illustrated by Fig. 1.

b

3

Fig. 1 Maximum-margin hyperplane and margins for an SVM trained with
samples from two classes. Samples on the margin are called support vectors.

The next step is to retrain SVM further by applying
hard-negative mining. This is done by computing HOG
descriptors for each image and each possible scale of each
image in the negative training set. If it incorrectly classifies a
given window as an object, record the feature vector
associated with false-positives patch along with the
probability of classification.

After training the classifier, it is then used on a sliding
window on each frame of each scale acquired from the camera
to detect pedestrians in, returning the bounding box. We then
used this bounding box information to count the assumed
centre pixel of the detected people. We use simple calculations
of dividing the width and height by two and adding it to the
origin pixel of the bounding box located at the top left-most
pixel.

For each frame processed, we then compare the centre pixel
values found to the previous one. If the difference is lower
than 20 pixels we assume the same location hence increasing
the time measurement. If it doesn’t detect people, same as no
centre pixel values found, the timer is reset to 0. State change
to tracking if the time measurement value exceeds timeout
value.

Having mapped raw disparity values to each colour pixel,
we then directly access raw disparity array values and apply
distance(cm) calculation formula to get distance value relative
to camera. This data of distance and angle measurement
relative to the camera is then sent to the microcontroller to be
used for navigation. Summary of algorithm is shown in
Algorithm 1. Note that the bounding box drawing function is
not shown.

Algorithm 1 Object Detection

1: Initialize HOG descriptor and Linear SVM Classifier.
2: Initialize prevpixel value.

3: Acquire image and detect.

4: if detected then

5: update centrepixel
6: if diffabs(centrepixel,prevpixel) < 20 then
7: count++.
8: else
9: count = 0.
10: else

11: count=0

12: if count>timeout then

13: state = track.

14: get distance and angle value.
15: send data to microcontroller
16: go to step 3.

Object detection algorithm is tested based on this scenario.
First scenario is to place a robot along with a camera on a
location standing still. A person is then walking at a usual
walking pace facing away from the camera near camera up to
~5 metres away and then walking back toward the camera
facing to camera at usual walking pace. Second scenario is to
make a person facing an angle rotated a whole circle from
several distance locations from the camera. In both scenarios,
we measure true positive rate and fps on various parameters.

We also measured the effect of different image sizes and
colours.

Fig. 2 Illustration of object detection testing scenario. Green circle is a robot.
Blue Triangle is person

IV. OBIiECcT TRACKING METHODS

For tracking, we use Kernelized Correlation Filter with the
initialized bounding box as the last frame of detection before
the timeout. The method is implemented from [8] with
wrappers in python from [9]. KCF is used to have high speed
and moderate accuracy. We noticed some extended works in
C++ in [10] and [11] but haven’t yet created the python
wrappers. Some works suggest the use of OpenCV contrib
module, but due to shortage of device storage, we did not
manage to use that module.

Our chosen method is then from [9] with slight
modification on the KCF.pyx file to include peak value as to
determine tracking failure by simple thresholding. This
thresholding value suggests failure when an object is moving
too fast or is in occlusion with another object. When this
happens, the robot will return to detect the state while
patrolling.

First, the tracker bounding box is initialized from the last
bounding box frame with modification. We discovered that a
person's head has more distinctive features compared to the
whole body, so we modify the bounding box to frame only the
head by assuming simple approximations to manage
computational cost. This modified bounding box is then used
as initialization of the tracker. It then updates the tracker
continuously if the peak value is still lower than the threshold
value ranging from 0.1 up to 1. Summary of algorithm is
shown in Algorithm 2. Note that the interface part of showing
the bounding box is not shown here.

9: send data to microcontroller
8: goto step 4.
9: else

10: _ state = detect

Algorithm 2 Object Tracking

1: Acquire last bounding box

2: Draw new bounding box based on last bounding box
3: Initialize tracker based on new bounding box

4: getpeakvalue()

5: if peakvalue > threshold then

acquire a new image.

update bounding box.

get distance and angle value.

P

The object tracking algorithm scenario is tested on both
scenarios used in testing object detection algorithms with true
positive rates values exchanged with peak value. Another
scenario is also added when the robot truly performs its task in
following a real person in real scenario, which in this case is
an indoor environment one.

Fig. 3 Illustration of object tracking testing scenario. Green Circle is Robot.
Blue Triangle is a person.

V. VIDEO STREAMING METHODS

As described in [1], our system uses Flask micro
framework to stream video for browsers via Motion JPEG.
This method has low latency although not the best in quality
since JPEG compression is not very efficient for motion
video.

The generator function takes a Camera class that returns
processed frames with bounding box and information drawn
in jpeg format. File writing done wusing function
cv2.imwrite() which benefits from CPU acceleration
provided by Nvidia. We measure the effect of setting up
streaming video on the fps of the process. We use a mobile
hotspot from our phone to connect the Nvidia Jetson TK1 to
the internet to stream to a local IP address. This to minimize
the effect of loss packet due to heavy latency.

VI. EXPERIMENTAL RESULTS

The robot is small, with a height of approximately 48 cm
and diameter of 12 cm. We place the Kinect as high as we can
and get around 33 cm in height. We tilt Kinect around 5°
upward to maximize vertical field of view in order to increase
accuracy.

A. Range and Distance Measurement Results

We test the maximum and minimum range of detection of
correct distance reading value using HOG descriptor. We get a
range from around 2.25 metre to 4.5 metre. However, the

correct distance value can only be measured up to a maximum
of around 3 metres, the same result as in [3] and [4].

We provide distance measurement results at 2.4 m to 4.5
m with 30 cm interval measurement. The average error is
around 2.1 cm. Some frames read are shown in Fig. 4.

TABLE II

DISTANCE ACCURACY MEASUREMENT

Distance(cm) Measured(cm) | Error(cm
)
240 241.84 1.84
270 269.89 0.11
300 294.27 5.73
330 330.05 0.05
360 363.17 3.17
390 389.21 0.79
420 419.27 0.73
450 454.36 4.36
Average 2.0975

= Detected Human

Fig. 4 Measurement frame at 390 cm (top) and 360 cm (bottom). Images are
cropped.

B. Object Detection Measurement Results

Default parameters of HOG descriptor win stride size of
(8,8), padding size of (16,16), scale of 1.06. Results shown in
several tables below. On Table III, parameters are set to
default. Table IV shows the effect of changing window size.
Table V shows the effect of changing the scaling value,
evaluated on gray400 mode. Table VI shows the effect of
changing scaling value on win 16, evaluated on gray400
mode.

TABLE III

EFFECT OF SIZE AND COLOUR

Mode Pos Neg FPS
rgb640 0.651163 0.348837 3.251988
rgb400 0.762712 | 0.237288 7.941857
gray640 0.606061 0.393939 3.769687
gray400 0.75 0.25 9.085793
TABLE IV
EFFECT OF WINSTRIDE VALUE
Mode Pos Neg FPS
win4-gray400 0.548387 | 0.451613 3.64511
win8-gray400 0.75 0.25 9.085793
winl6-gray400 0.818182 | 0.181818 9.411325
TABLE V
EFFECT OF SCALE VALUE SMALL WINSTRIDE
Mode Pos Neg FPS
win4-scalel.06 0.548387 | 0.451613 3.64511
wind-scalel.12 0.65 0.35 5.453001
win4-scalel.18 0.612245 | 0.387755 6.922598
win4-scalel.30 0.727273 0.272727 6.293497
TABLE VI
EFFECT OF SCALE VALUE BIG WINSTRIDE
Mode Pos Neg FPS Rate
winl6-sca 0.20930
le1.01 0.666667 0.333333 3.63821 2
winl6-sca
le1.06 0.818182 0.181818 9.411325 | 0.05314
winl6-sca
lel.18 0 1 23.7641 0

The positive count increases if the frame return detected
box with the correct corresponding distance value (not
showing negative value), it counted negative otherwise. Mode
winl6-gray400 looks promising, but if we look into how
many frames it lost totalling the not detected bounding box, it
only detects 5% of total frames, which is 1/6 times smaller
than the average results of 30%, therefore unreliable.

The best tuning parameters therefore are presented with
the default parameter values, at 7.94 fps of 76% positive rate
detection.

Using the default parameter values, we then examined the
facing angle in which the algorithm fails to detect a person.
The data on 2™ position further from camera are not presented
because of false distance reading values while data on 3™
position further from camera for not showing any detection.
Some figures from the 1% position further from the camera
where facing angle causes failure in detection are shown
below.

Fig. 5 Positive and negative detection. The difference between the image on
the left and on the right is 1 frame. Images on the left precede images on the
right. Person rotated clockwise.

From Fig. 5 we can infer that the detection algorithm fails
to detect a person at an angle in which the facing angle is
perpendicular to the camera angle. Possible cause is missing
one leg and one hand features from the pretrain SVM detector
that detect two legs and two hands.

C. Object Tracking Measurement Results

Positive rates are determined as correct distance
measurement. Measurement values are shown in Table VII.

TABLE VII

MEASUREMENT VALUES OF OBJECT TRACKING USING KCF

Mode Pos

Neg FPS

rgb400(default) 0.980545 | 0.019455 14.58001

We observe a fluctuating fps value from 5.7 fps to 20.45
fps. The cause is shown to be a serial communication problem
between the microcontroller and camera in the USB hub as we
write files simultaneously both from the microcontroller and
from the Nvidia Jetson TK1. Nevertheless, we achieve a high

positive rate of 98% at around 14.58 fps average, making this
algorithm suitable enough for real time tracking.

D. Video Streaming Measurement Results

Streaming results give around 1 to 2.5 fps drop from offline
use. Intermittent delay sometimes happens due to mobile
hotspot connectivity problems. Fig. 6 show some frame
sample of online streaming.

= B 3 4« Thuapr19201819:09 %

G change directory | % [) Streaming Video <. x

€ & C | 192168.43203:5000/camera

[5216843205 x| History

% i

Smart City Robot

TIME: Thu Apr 19 19:08:55 2018 ==>

Fig. 6 Motion JPEG streaming implementation on detection algorithm using
mobile hotspot. FPS values range between 6 to 8 fps.

VII. CONCLUSIONS

We present findings in Nvidia Jetson TK1 OpenCV4Tegra
implementation of person detection using HOG descriptor +
Linear SVM and person tracking using Kernelized Correlation
Filter using python language. The best tuning parameter value
for HOG detect multiscale is win stride value of (8,8), scale
value of 1.06, on 400 pixels width RGB frames. Fps for this
tuning parameter is 7.94 with 76% positive rate of detection.

Future works would be to implement the ensemble tracker
algorithm to address problems with occlusion. The use of
more advanced Nvidia Jetson version e.g. TX1 is
recommended when using neural network framework

approach.
REFERENCES
[11 G. Gunawan Lumban, S. Rahmadiana, K. Ricky, “Development
Platform Robot Smart City”,

[2] (2018) The Elinux website. [Online]. Available: http://elinux.org/

[3] Khoshelham K., Elberink S.O. Accuracy and Resolution of Kinect
Depth Data for Indoor Mapping
Applications. Sensors. 2012;12:1437-1454. doi: 10.3390/s120201437.

[4] (2018) The Microsoft Developer Network (MSDN) website. [Online].
Available: https://msdn.microsoft.com/en-us/library/jj131033.aspx

[5] (2018) OpenKinect github. [Online]. Available:
https://github.com/OpenKinect/libfreenect/

[6] (2018) OpenKinect Documentation Website. [Online]. Available:
https://openkinect.org/wiki/Imaging Information#Depth_camera_accur
acc

[77 (2018) Nvidia Devtalk
https://devtalk.nvidia.com/

[8] J. F. Henriques, R. Caseiro, P. Martins, J. Batista, “High-Speed
Tracking with Kernelized Correlation Filters”, TPAMI 2015.

[91 (2018) KCFpy github. [Online].
https://github.com/uoip/K CFcpp-py-wrapper

Website. [Online]. Available:

Available:

[10]

[11]

Senna, Pedro and Dummond, Isablea Neves and Bastos, Guilherme
Sousa. “Real-time ensemble-based tracker with Kalman filter” in
SIBGRAPI’17.

Huynh, Phung & Choi, In-Ho & Kim, Yong-Guk. (2015). “Tracking a
Human Fast and Reliably Against Occlusion and Human-Crossing”.
10.1007/978-3-319-29451-3 37.

[12]

[13]

(2018) Flask Documentation Website. [Online]. Available:
http://flask.pocoo.org/docs/0.12/

Liu, Wei and Anguelov, Dragomir and Erhan, Dumitru and Szegedy,
Christian and Reed, Scott and Fu, Cheng-Yang and Berg, Alexander C.
“SSD: Single Shot Multibox Detector”. ECCV. 2016

